NONSTEADY HEAT EXCHANGE DURING PULSATING
LAMINAR FLOW OF A VISCOUS LIQUID IN AN ANNULAR
CHANNEL
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Problems of the active action (mechanical, acoustic, or electromagnetic, for a conducting medium) on a
flow, having the purpose of the intensification of heat exchange [1], have recently elicited the interest of inves-
tigators. The mechanical methods of action include the use of pulsating streams of coolants to increase the
heat removal in the thermal initial sections of channels with laminar nonsteady flow of a viscous incompres-
sible liquid.

The possibility of intensifying heat exchange by varying the frequency and amplitude of pulsations in the
pressure gradient in annular channels is investigated in the present report, since there are presently conflict-
ing data on this problem in a number of reports [2-5]. The choice of an annular channel is explained by the
wide distribution in engineering of heat-exchange devices formed by two coaxial cylinders, as well as by the
absence of theoretical and experimental reports on heat transfer during pulsating flow in channels of such
shape. In contrast to the known reports, the problem is solved in a conjugate formulation, which most fully
reflects the real nonsteady thermal processes in the flow of a viscous liquid in the thermal initial section when
the conditions at the interfaces of the media are not known in advance and the temperatures in the walls and
the liquid must be determined jointly [6, 7]. The influence of the dissipative function and the axial heat conduc-
tion both in the liquid and in the channel walls is taken into account. This allows one to apply the methods
developed for the solution to the calculation of conjugate heat transfer through a coolant with arbitrary Prandtl
numbers.

The conjugate formulation of the problem makes it possible to estimate the heat-exchange intensity using
t'!

the heat flux summed over several pulsation periods ( @ = ‘fqlrdt over the time of establishment of the process
. 0

f
or @ =§g|pdt over equal time intervals for different frequencies in the established mode; q is the specific
Uy
heat flux) rather than by comparing average Nusselt numbers for different modes of flow {2, 3], since when
there is nonsteady longitudinal nonisothermicity in the channel walls, e.g., the use of Nusself numbers loses
physical meaning [8].

1. Pulsating flows can be arbitrarily divided into two types: 1) the imposition of pulsations on the main
flow [8p/0x = 8p/0x |, +£(t), with £(t) being a periodic function of time]; 2) "pure" pulsations (9p/ox |(=0).
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The comparison of heat-exchange intensity in the first case must be made with allowance for the equal liquid
flow rate for dp/8x=const and dp/9x = F(t); in the second case it is desirable to compare boundary heat fluxes
for different pulsation frequencies. We investigated both types of flows with frequencies n=w /27 =2-100 sec™!
since the calculations showed that higher frequencies do not have an appreciable effect on the heat transfer
{under the conditions analyzed in the report). ‘

The process of flow and heat exchange is described by a set of equations and boundary conditions in the
form

v 1 dp d%v 1 ov . . ,
7=ty [E ) v =W .0
aT, @T, T, 4 or, .
=G R W =123 (1.2)
C _ v [\ T,
Wy=W,=0, Wg_cp( 2N o 2 (1.3)
0 Iy=1,; Lt 0,i=1,23
at g = ;= 143 Er x—->m= ,l——-1, ,3, (154)
st r=0 L0, at r=r, 7, =T (1.5)
at r=r, =0, T,=7T,, 7,1—%7% =?»2%; (1.6)
at r=r,v=0, Iy,=T,, Kz%=h3ﬁ§3—; {L.m)
at t=0 T,=T,=T, Ty="Tw, v=1,; (1.8)
— 92— B+ Asinot, A<B, (1.9)
_ 2 1 (ro/ry)2 —1 r .
w=Brig |Gt o T%“]’
Ip . .
—W—Asmmt, v, =0, {1.10)

where v is the velocity of the liquid; Tj, i=1, 2, 3 are the temperatures of the inner cylinder, the liquid, and
the wall, respectively; x, r, and t are the cylindrical coordinates and time; Aq,aj, i =1, 2, 3 are the coef-
ficients of thermal conductivity and diffusivity; p, Cps and p are the density, specific heat capacity, and coef-
ficient of viscosity of the liquid; T+ is the temperature at the inlet; T ., is the temperature of the medium; w
and A are the angular frequency and the amplitude of the pulsations.
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Equations (1.9) correspond to the case of pulsations with imposition on the main flow and (1.10) corre-
spond to "pure" pulsations.

2. The constaney of the thermophysical properties of the liquid and the channel walls makes it possible
to solve the hydrodynamic and thermal parts of the problem separately.

The velocity distribution was obtained analytically by the method of finite integral transformations with
respect to, the r coordinate [9] in the form

vr, t) = E V]Z:r) vt (Ba- 1),

n=1

.
ap2t i
where v1(B,, #) = exp (— apit) [f: (ﬁn)+ab§ e ™ Qu(Bn: ) dt]: Valr) =J, (ﬁnr)—ﬁ%,%m Bar)i Ho=|VaI%
Bn are the roots of the characteristic equation; Jy(Br,)Ny(Bry) —J(Br)Ny(Br,) =0; f(B,) and Qq(By, t) are known
functions; J, and N, are zeroth-order Bessel functions of the first and second kinds, respectively.

The solution of the thermal problem is constructed from the value found for the velocity:

1. The numerical solution is based on the scheme of decomposing Egs. (1.2) into six one-dimensional
equations, the approximation of the latter by an implicit two-layer scheme, and the solution of the finite-dif-
ference equations using the trial-run method [10]. For a simple realization of the trial-run method it becomes
necessary to assign certain limits on T; at x=1 >d, where d is the equivalent diameter of the channel, in place
of the second condition of (1.4). In the process of the calculation we used the conditions 8T;/8x =0 or the
"soft" boundary conditions 8%T;/8x2=0.

2. A semianalytical solution was obtained using a Laplace transformation with respecf to the longitudinal

27
x coordinate for Egs. (1.2) modified with ), aa:;

(1.4) and an approximation of the resulting equations by an implicit scheme with the subsequent use of a trial
run to solve the finite-difference equations in the transform space. The transition back to the inverse-trans-
form space is made by the method of [11] by the equation

1.9 [ 8T,
EMT 5 (r -—&—rL) in the absence of the second of the conditions

P (0) = 20 Cnlr, t)sin(2n +1)0, O = arccos e—o%,

and s =(2n +1)o is the transform parameter.

: 3. In Figs. 1-5 we present the results of calculations for the following concrete cases: the liquid is

water, the inner cylinder is steel, @ =A/B=0.3-0.7, and Pr = v /ay=12.5; variant I: copper wall, T ,,=303°K,
T4+=Ty=273°K, Re = (vy)d /v =0.4, Sh=nd/{vy) =0.8-16, Eu=Bd/p (v ?=400, and Br = s (vp)2/A y(T,, ~T4) =
'0.0166; variant II: steel wall, T =273°K, T4+=T;=303°K, Re=1.2, Sh=0.034-1.7, Eu=36.4, and Br =—0.612 [Re,
Pr, Sh, Eu, and Br are the Reynolds, Prandtl, Strouhal, Euler, and Brinkmann numbers, respectively).

In Fig. 1 we present velocity profiles for the case of pulsations with imposition on the main flow at dif-
ferent times for different frequencies with B=100 and A=50: 1) t=0;2) t=0.06, n=20; 3) t=0.09, n=20; 4}t =
0.06, n=10; 5) t=0.11, n=10 (variant ). It is seen that velocity fluctuations near the initial profile are charac-
teristic when the load disturbances are assigned in the form of (1.9). Strong return flows develop in the case
of pure pulsations (B=0).

The heat flux q=~A8T/ dr |y =, atthewallasa function of the longitudinal x coordinate at different times
for @=0.5 is shown in Fig. 2: 1) h=5§ 2) n=0 (steady flow); 3) n=20; 4) n=2.5; 5) n=20; 6) n=5 (variant I).

ty
The total heat flux Q = ﬁ ql—rdt as a function of the frequency n and amplitude A of the pulsations is
(]
presented in Figs. 3-5; Fig. 3: x=0.01,a=0.5; 1) tx=0.2; 2) tx =0.4 (variant I); Fig. 4: «=0.5, tx =0.4; 1})x=
0.05,n=0; 2) x=0.05; 3) x=0.01, n=0; 4) x=0.01 (variant II); Fig. 5: n=10, tx =0.1; 1) x=0.05; 2) x=0,01
{variant II). .
The instantaneous heat fluxes at different times can differ by tens of percent for different frequencies,
considerably exceeding the values of q for steady flow. These results are in qualitative agreement with the
experimental results of [5].
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At small values of Br (a weak influence of energy dissipation) the total heat fluxes increase with an in-
crease in frequency, both for the imposition of pulsations on the main flow and for pure pulsations, with the
rate of increase in the total heat removal slowing with an increase in frequency. For long enough times the
total heat removal asymptotically approaches the heat removal for steady flow with an inerease in frequency.
It should be noted, however, that the heat transfer is strengthened insignificantly (by 5%).

With an increase in Br (variant II) the total heat removal increases by more than 10% in comparison with
nonpulsating flow and by more than 20% with variation in A (see Figs. 4 and 5). Under the conditions analyzed
in the report the maximum increase in heat transfer is observed in the frequency interval of n =20-30 sec 1.

Thus, in the case of negligibly low energy dissipation one observes an insignificant intensification of heat
exchange by pulsations in the pressure gradient. But pulsating flows of coolants should not be considered as
a replacement for steady flows with the same liquid flow rate. They are an independent flexible means of con-
trol of heat exchange, in chemical technology apparatus (in dissolution, drying, ete.), e.g., where processes
take place more intensely in the presence of pulsations. :

When dissipative effects are important there is a significant increase in heat removal in comparison
with nonpulsating flow. This allows one to use pulsating streams in the indicated case for the intensification of
the process of heat exchange in channels.

The authors thank B. G. Kuznetsov and B. P. Kolobov for a discussion of this work.
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